If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-8x-135=0
a = 3; b = -8; c = -135;
Δ = b2-4ac
Δ = -82-4·3·(-135)
Δ = 1684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1684}=\sqrt{4*421}=\sqrt{4}*\sqrt{421}=2\sqrt{421}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{421}}{2*3}=\frac{8-2\sqrt{421}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{421}}{2*3}=\frac{8+2\sqrt{421}}{6} $
| 32x−1=23 | | p+5p-2p+4p=-40 | | 12x+8-10x-8=6 | | 4m-9=×7 | | 13/5x=24 | | 6x(2x+5)=0 | | x+25=76 | | y=-5/9+9 | | 7.50m=40 | | 3n+25=75 | | -12+8x=-44 | | 5.25x=1.4 | | 3x-5+2x-6x=9 | | (3x+40)=(7x-72) | | (1/16)=2^3x-1 | | 1x+2x+5+3x+4x-4=420 | | 2x-(31-3x)=-6 | | 1.4x=5.25 | | 10x-2,x=4 | | b(4)=1(−2)4−1 | | 10x-2x=1/4 | | -16t^2+40t+5=30 | | 9x÷2=12 | | 8xˆ2+14x+3=0 | | 2k2−5k−18=0. | | (X+3)^2=9^2+x^2 | | 11.8=14x+12.5 | | 4x-20=11x+110 | | r-17.9=-2.4 | | 2x(31-3x)=-6 | | 0.25f=10 | | x^2+20x=2x^2+10x |